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CHAPTER I
INTRODUCTION

I.1 BACKGROUND

The Sacramento District of the U.S. Army Corps of Engineers (Corps)
is presently in the process of dredging the Stockton Ship Channel to .a
recently authorized depth of 35 feet below mean lower low water.

The channel deepening will increase the channel flow area resulting
in lower flow velocities. The lower velocities will increase the time.
required for the flow to pass through the project area. The lower
velocity coupled with the increased depth will tend to reduce the rate
of oxygen reaeration.

Because of turbidity levels typically found in the Ship Channel and
Deita channels, the euphotic zone (i.e., the layer with sufficient light
for photosynthesis) does not reach the bottom of the deeper channels.
Since the euphotic zone fraction of the total water body will be reduced
by the channel deepening, it is believed that dissolved oxygen uptake by
phytop1aqkton will increase in the Ship Channel.

The increased hydraulic residence time, reduced reaeration and
increased oxygen uptake by phytoplankton could all contribute to lower
oxygen in the Stockton Ship Channel and adjacent Delta waters.
Historically, low dissolved oxygen levels have been observed in the
channel near Stockton and these reductions have had an adverse effect on.
fi?h populations which migrate through or reside in this portion of the
Delta. ’

To quantify the effects of the channel deepening on dissolved
oxygen concentrations, the Corps contracted with Resource Management
Associates {RMA) to develop a Tink-node .model representation of the
Delta capable of simulating hydrodynamic and water quality conditions.

1.2 SCOPE OF WORK

The project is composed of two major components; the hydrodynamic
and the water quality evaluation. The hydrodynamic evaluation includes
the following tasks:

1. Set up a link-node network representation of the
Sacramento-San Joaquin Delta system. The network repre-
senting the Port of Stockton and Ship Channel shall be of
sufficient detail to provide good spacial definition of
the hydrodynamic and water quatity effects of the channel
deepening. '



2. Calibrate and validate the hydrodynamic model to
historical stage data.

3. Evaluate effects of ship channel deepening on the hydrau-
lic characteristics of the Delta channels using the
calibrated model.

4. Perform hydrodynamic simulation for the test years wusing
the calibrated model, and store the results for use as
input to the water gquality modeling.

The water quality evaluation included the following tasks:

1. Develop a water quality simulation procedure for the link-
node representation of the Sacramento-3an Joaquin River
Delta system.

2. Calibrate and validate the water quality model to histori-
cal dissolved  oxygen data, using two different  test
periods.

3. Evaluate the water quality model sensitivity to key input
parameters, such as:

a) inflow quality

b)+ depth of light penstration

¢} benthic Biochemical Oxygen Demand

d) phytoplankton and detritus fluctuations
e) various reaction rate constants

4. Evaluate the effects of channel deepening by performing
water quality simulation for the iwo test periods using
the calibrated model. This analysis shall use a modified
link node representation based on 1982 sounding data with
Ship Channel cross-section depths of 30 and 35 feet.

5. Estimate the amount of forced aeration required to balance
any reduction in DO levels caused by channel deepening.

1.3 PROJECT ORGANIZATION AND ACKNOWLEDGEMENT

The study was conducted under the supervision of Mr. D. J. Smith of
RMA and was assisted by Ms. Lisa Roig in model production runs and in
the report preparation. Mr. George Nichol served as project manager for
the Corps and provided project guidance and coordinated the data

collection effort.



CHAPTER II
SUMMARY

I1.1 PROJECT GOALS

The primary purpose of the study was to evaluate the effect of
deepening the Stockton Deep Water Ship Channel on the hydraulics and -
water quality in the area of the Port of Stockton. Dissolved oxygen
concentrations were the main water quality concern. This evaluation was
accomplished using a 1link-node hydrodynamic and water quality model
tailored to the project needs. The major components of the project
were:

1. Modification of the computer code to meet the specific and
unique requirements of the study.

2. Development of a model representation of the ship channel
and adjacent Delta channels

3. Calibration and validation of the hydrodynamic and water
quality models.

4, Evaluation of the models sensitivity to various model
parameters.

5. Evaluation of the impact of the deeper ship channel on the
hydraulics and water quality in the area of the Port of
Stockton.

6. Estimation of the amount of forced aeration required to
balance the reduced DO levels caused by channel deepening.

II1.2 PROGRAM MODIFICATIONS

Modification of the hydrodynamic model computer code included
provision for continuous tidal condition update, variable Clifton Court
withdrawals, efficient input of channel depletions and more extensive
output to aid in the interpretation of model results. Ma jor
modifications of the water quality model .computer code included the
addition of the significant water quality parameters and interaction
« which control the dissolved oxygen resources of the Ship Channel near
the Port of Stockton, and a procedure to minimize numerical dispersion
by adjusting the dinternode mass transfer rate based on hydraulic
residence time. These model improvements are discussed in detail in the
program documentation (1) prepared for this project.



1.3 MODEL REPRESENTATION

The Stockton Ship Channel network was designed to provide a
detailed representation of the Stockton Ship Channel and adjacent Delta
channels and less detail further from the project site. The network was
extended beyond the limits of the immediate study area to eliminate the
need for specifying the flow rate and quality of the channels entering
the Stockton Ship Channel. With this network, the flows and quality
entering the ship channel are computed based on boundary conditions
specified far away from the project site, thereby greatly reducing the
possibility of biasing the -results by improper boundary condition
specification.

1.4 HYDRODYNAMIC CALIBRATION AND VALIDATION

The hydrodynamic model calibration was accomplished using data for
a five day high flow period in June 1978 and a fifteen day low flow
period in September 1974. These two periods were selected to ensure
that the model represented a wide range of hydraulic conditions. BDuring
the calibration process, the Mannings roughness coefficient for selected
channels were adjusted until good agreement was reached between the
computed and observed tidal stage throughout the Delta. The final
roughness  coefficients for the calibrated model were within the
generally accepted range for <low moving natural and man-made channels
and ranged from 0.025 for well maintained straight channels to (.045 for

the more natural meandering channels.

_ The hydrodynamic model validation utilized a 15 day period in the
Fall of 1978. The calibrated model was run without altering any

roughness coefficient or channel geometry. Good agreement between the

computed and observed tidal stage was reached at alt locations. ’

Reasonable agreement between the computed and the OWR estimated
flows at the 01d River-San Joaquin bifurcation and Delta cross-channel
and Georgiana Slough was observed for both the calibration and

validation periods.

The good agreement between the simulation results and the observed
tidal stage and estimated flows during the calibration and validation
periods indicated the model was adequately calibrated and ready to
evaluate the hydrodynamic effects of the channel deepening. '

11.5 QUALITY CALIBRATION AND VALIDATION

~The period September 1 through September 26, 1974, was selected for
water quality model calibration. Model calibration was performed using
observed DO concentrations in the San Joaquin River and Stockton Ship
Channel measured by the DWR and by the City of Stockton.

For calibration the inflow gquality of the = San Joaquin River and
other major tributaries was based on one or two measurements taken



during the month of September. The Stockton waste water facility
effluent was based on plant operation data. Because of the sparse data
set, no attempt was made to vary the quality of any of these inflows
during the calibration.

The calibrated model does not match extreme variations observed
during the test period due in part to the use of average inflow
conditions. Rather, the model was calibrated to approximate average
conditions in the Stockton Ship Channel. No attempt was made to match
the variable DO profile since there was not sufficient inflow data to
justify variation within the calibration period. ' .

The calibrated model was validated using the September 26, 1978 to
October 10, 1978 test peried by running the model for the 15 day period
without varying any model parameters. Again, the inflow quality of the
San Joaquin River and other major tributaries was based on one or two
measurements taken during this period. The model results match observed
DO ranges well over the entire validation period. The match beween the
computed and observed DO values was much better for the validation than
for the calibration period. The better match was due in part to the
smaller variation in the hydrology and other environmental conditions.

Additional water quality parameters simulated by the model were not
calibrated due to insufficient data; however, predicted concentrations
for nitrate-nitrogen, orthophosphate-phosphorous, total coliform,
detritus, ultimate carbonaceous BOD, amnonia-nitrogen, diatoma, and
other algal species were within the ranges typically observed during
September -and October in the Stockton Ship Channel.

For both the hydrodynamic and quality calibration and verification
described above the 1977 channel geometry soundings were used. These
data were the closest in time to the 1974 and 1978 hydraulic and water’
quality simulation periods. ' '

I1.6 MODEL SENSITIVITY

The intent of the sensitivity analysis was to determine the
magnitude of the effect of various environmental factors on the medel
representing the dissolved oxygen resources. Based on a good
understanding of what affects DO in the Delta and experience gained 1in
the calibration phase of this project, the models sensitivity to the
depth of 1light penetration, benthic BOD, Stockton wastewater facility
effluent quality, San Joaquin River quality upstream of Stockton, DO
coupling with phytoplankton and detritus, and method of calculating
inflow estimates were examined.

Sensitivity analyses were carried out for . the September 26 -
October 10, 1978 test period. 1977 channel geometries were used.

 The sensitivity analysis confirmed that the dissolved oxygen

resources in the ship channel are significantly influenced by
phytoplankton growth and respiration and detritus decay. The quality of

5



the San Joaguin River and Stockton wastewater .faci1ity effluent which.
were the major sources of phytoplankton and detritus therefore have the
greatest influence on dissolved oxygen within the ship channel.

This analysis also showed the benthic B0OD is only a minor
contributor to the DO sag in the ship channel,

I1.7 IMPACT OF SKIP CHANNEL DEEPENING

The evaluation of the effects of channel dredging utilized two
revised sets of- model geometry which were based on the Corps" 1982
soundings. For pre-dredging conditions the channel cross sections were
truncated at 30 feet. This was done even though many pre-dredging
depths were deeper than 30 feet due to previous overdepth maintenance
dredging. The authorized pre-dredging depth of 30 feet was used in
modeling because this was an approved depth against which effects could
justifiably be compared. To represent post-dredging conditions, the 35
foot dredge template was superimposed.. Other delta channels were not
altered in either of these model representations.

Both the hydrodynamic and water quality effects of channel
deepening were evaluated. The channel deepening had no detectable
effect on the tidal stage at any location within the Delta. Velocities
in the turning basin and ship channel, however, were typically reduced
10% due to the increased cross section area. Because of the' reduced
velocity and increased depth, the reaeration rate calculated using the
0'Connor and Dobbins relationship was reduced typically 20%. Net flows
in the ship channel and all hydraulic parameters elsewhere in the Delta
were virtually unaffected by the channel deepening.

Channel deepening contributes to the DO sag by reducing velocities
and reaeration and decreasing the euphotic zone fraction of the water
column. To quantify these effects of channel deepening, the water
quality model was run for both the September-October 1978 period and the
September, 1974 period, using 1982 geometries and  hydrodynamic
simulation results for the 30 foot and 35 foot deep ship channei. In
each case, the maximum reduction in DO due to the deeper channel was

approximately 0.5 mg/L.

Many of the channels are already deeper than the 30 foot authorized
depth, therefore the actual reduction in DO due to deepening to 35 feet
from the existing condition would be less. The maximum reduction due to
dredging relative to existing conditions was approximately .25 mg/L.

I1.8 DISSOLVED OXYGEN REQUIREMENTS FOR REVERSAL OF DREDGING EFFECTS-.

In order to balance the reduced oxygen levels predicted for the
dredged channel, oxygen could be added to the ship channel system.
Several alternatives are available to increase oxygen levels in the ship
channel including flow alteration and mechanical aeration.




Determination of the most feasible method for oxygen enhancement
however, is beyond the scope of this contract. ' :

To provide and estimate for the amount of additional oxygen needed
to counter the effects of the deeper ship channel, the model was run for
the dredged channel configuration and a total of 7500 pounds of oxygen
added per day to a limited reach of the Stockton Ship Channel. The area
of forced oxygen input was bounded by river miles 33 and 38 (nodes
21-25) and coincided with the area of maximum computed sag on October
10, 1978. The 7500 pounds of oxygen added by induced aeration increased
the daily average minimum DO approximately 1.1 mg/L from 4 mg/L to 5.1
mg/L for 1978 test period. Assuming the increase is proportional to the
amount of oxygen input over the 1.1 mg/L range, approximately 3400
pounds of oxygen per day would be required to counter the .5 mg/L
reduction in DO caused by the dncreased depth in the Stockton Ship
Channel. ,

Proper management will be important 1in prescribing an aeration
plan. This fact is demonstrated by the simulation results for September
26, 1974, which indicates an addition of 7500 pounds of oxygen per day
between river miles 33 and 38 would result in an increase in the minimum
D0 of only .65 mg/L. The effect of aeration was less pronounced since
the Tow point 3in the DO sag occurred further downstream due to larger
net San Joaguin River flows. Forced aeration would be the most
effective if the location and intensity could vary with the hydrology
conditions to ceincide to the region of maximum DO deptessiocn.



CHAPTER III

REPRESENTATION AND APPLICATION OF THE
SACRAMENTO-SAN JOAQUIN DELTA MODEL

III.1 INTRODUCTION

RMA's link-node hydrodynamic model represents the estuarine system
as a variable grid network of “nodes" and "channels" (i.e., 1inks).
Nodes are discrete volume units of waterbody, characterized by surface
area, depth, side slope and volume. The nodes are interconnected by
channels, each having associated length, width, cross-sectional area,
hydraulic radius, side slope and friction factor. Water is constrained
to flow from one node to another through these defined channels. —The
associated quality parameters (i.e., heat and biotic and abiotic
materials) are assumed to be passively transported with the water
movement through these channels.

The hydrodynamic program performs a numerical integration of the
equation of motion and the equation of continuity, stepping forward in
time. The water quality program integrates a series of interdependent
and coupled differential equations derived from the principle of
conservation of heat and mass and the specific response of each
parameter. The results are time histories of velocities and flows in
each channel and the water surface elevation and the quality parameters

concentration and temperature at each node.

The procedure and consideration for selecting the node and channel
representation of the prototype, the theory of one-dimensional fluid
flow, the relationships affecting each of the quality parameters and the
input data required by both programs can pe found in the wusers manual
(1) prepared for the Stockton Ship Channel study.

I11.2 STOCKTON SHIP CHANNEL LINK-NODE NETWORK

The Stockton Ship Channel network shown on Figure III-1 was
designed to provide a detailed representation of the Stockton Ship
Channel, Turning Basin, and adjacent Delta channels and less detail
further from the project site. The network extends beyond the limits of
the immediate study area to eliminate the need for specifying the flow
rate and quality of the channels entering the Stockton Ship Channel.
With this network, the flows and quality entering the channel are
computed based on boundary conditions specified far away from the
project site (i.e., sea boundary at Antioch, San Joaquin River at
Mossdale, etc.}). By including most of the Delta in the network the
possibility of biasing the results by boundary condition specification
has been greatly reduced.



The network utilized elements of the existing "Delta Coarse Grid
Network" which was developed by the State Department of Water Resources
“and others (2). This network was based on navigational chart data and
measured cross-section and has been shown to give a good representation
of Delta hydraulics.

In the immediate vicinity of the Stockton Ship Channel, many
channels ‘and nodes were added to provide a gradual transition between
the coarse grid and the detailed ship channel grid. As with the coarse
grid network, navigational charts and cross-section data were used to
define the network geometry. )

the cross sections based on 1977 and 1982 channel soundings were used.
The sounding transects were taken at intervals of approximately 400 feet
along the length of the Ship Channel. One to five representative
transects per mile were selected by Corp personnel and plotted. These
cross-section locations are shown on Figure 11I-2 and the plotted cross
sections are shown in Appendix A. To represent post dredging conditions
the 35 foot dredge template was superimposed on the 1982 channel cross
sections. A 40 foot template was used for the sections at river miles
39.34 and 39.57 to represent the settling basin {i.e., sediment trap).
The sounding transects data were all referenced to the "zero sounding
line" which coincides to mean lower low water at the site. The sounding
depths were corrected to mean sea level (MSL) datum by adding a
correction of 1.1 feet {e.g., 35 feet below zero sounding = 36.1 feet
MSL). Table III-1 shows the cross section area below the zero sounding
line for 1977 and 1982 conditions. The cross section area for 1982
conditions truncated to the 30 foot depth, and the 35 fool dredge
template (35 and 40 feet in the settling basin) were used to evaluate
the effects of channel deepening.

The actual channel and node geometry data developed for the
Stockton Ship Channel project can be found in the users guide.(1)

III.3 DELTA HYDROLOGY

The hydrologic data required by the hydrodynamics model includes
point and nonpeint inflows to and withdrawals from the Delta channels,
evaporation losses and the imposed tide at the seaward boundary.

Major inflow to the Delta includes the Sacramento River (node 65),
San Joaquin River {node 163), Mokelumne River (node 89) and the City of
Stockton's waste water discharge (node 158). Major withdrawals include
the Delta Mendota Canal {(node 144), the California Aqueduct (node 151)
and the Contra Costa Canal (node 123). Many other smaller inflows and
withdrawals result from agricultural, municipal and industrial uses.
These smaller inflow and withdrawals have been Tumped along with net
evaporation into a single value referred to as channel depletion. The
channel depletion is based on many years of experience and spot
measurements by the DWR of various inflows and withdrawais. The total
channel depletion which varies on a daily basis is composed of a



highland component (39%) and a lowland cﬁmponent (61%}. The channel
depletion is allocated to each node by means of a lowlands and highlands
channel depletion ratio and are cummarized in the users guide.(1)

The major inflows and withdrawals and the net channel depletions
are summarized on a daily basis in the DWR's “Dayflow Summary" (3) for
water years 1935 through 1980. The Dayflow Summary served as the source
of all inflow and withdrawal data with the exception of the City of
Stockton's waste water discharge rate which was obtained from plant
operation reports,

The DWR maintains continuous tidal stage recorders at numerous
locations throughout the Delta (see Figure I111-1). These records are
processed and presented in tabular form as stage and time pairs at 15
minute intervals. These records were used to define the stage at the
seaward boundary (Antioch) and at other locations inland for evaluating

model accuracy.

III.4 DELTA WATER QUALITY

The water quality model simulates temperature and the following
water quality parameters: '

1. Dissolved oxygen

2. Carbonaceous BOD

3. Detritus (non living particulate organic material)
_-4. Ammonia nitrogen (nitrogenous BGD)
~5. Nitrate nitrogen

6. Phosphate phosphorus ,

7. Phytoplankton Type 1 (diatoms)

8. Phytoplankton Type 2 (greefis and others)

9, Coliform Bacteria

10. Total Dissolved Solids

The interaction and coupling between these water quality parameters
is shown in Figure III-3. The concentration of each parameter is
computed at hourly intervals. Some of these parameters are measured
directly at various locations within the Detta while others must be
estimated based on indicated parameters (e.g., Phytoplankton based on
Chlorophyll a) and a knowledge of the inflow or location. The procedure
used to estimate model parameters from indicator parameters is = as
follows:

Phytoplankton - 100 times the chlorophy1l a measurement. (The ratio of
algal biomass to chlorophy1l a ranges from 25 to 150 (5)
and is normally near 100)
- 60% of the volatile solids measured -in the City of
Stockton waste water effluent. (Diatom were assumed
dominant in all inflows except for the City of Stockton
discharges where green and others were assumed to

dominate.)

10



Detritus - 100 times the pheophyton 2 measurement.
- 40% of the volatile solids measured in the City of
Stockton waste water effluent.

Phosphate P - Dissolved ortho phosphorus

Water quality data required by the water quality model includes
initial conditions at each node, system coefficients at each node,
quality conditions at the seaward boundary, quality inflows, and
meteorological data.

Initial quality conditions for the Delta were derived from STORET
data, DWR data reports, and supplemental data from state and local
sources, Sampling stations in the Delta are spaced more widely than
nodes in the model representation. Therefore, data from one sampling
station were applied over a zone of nodes. Techniques of .data
collection and analysis vary between contributing agencies, yielding
variable results. Often only one or two data points exist for the
entire test period. To overcome the space quality data set, average
September conditions were simulated for approximately 20 days and the
results were used as initial conditions for all quality evaluations.
The subsequent quality simulations were run for at 1least 15 days to
avoid biasing the results by these initial condition data.

Water quality conditions in the Delta are influenced by 4 major
jnflows. The San Joaquin River drains the heavily irrigated San Joaquin
valley. San Joaquin River quality in September is high in dissolved
solids, nitrates and phosphates and is a major source of diatoms to the
Delta system. Biochemical oxygen demand 1in the San Joaguin River is
also high for a natural river.

The quality of the Sacramento River and the Mokelumne River are
very similar and superior to that of the San Joaquin River. The
concentration of dissolved solids, nutrients, phytoplankton and BOD in
the San Joaquin are generally many times greater than those observed in
these two northern inflows. Dissolved oxygen is about 8 mg/L in all
three rivers as they enter the Delta.

The fourth major inflow from a quality standpoint is the Stockton
Regional Waste Water Control Facility. The effluent is released at
river mile 42 approximately two miles upstream of the ship channel. The
Stockton STP effluent was high in volatile suspended solids which were
assumed to be green algae and detritus and often low in dissolved
oxygen. The treatment plant has been upgraded to reduce the effluent
BOD and volatile solids since the 1978 model validation period.

The withdrawals for the Delta Mendota Canal and California Aqueduct
also have a significant effect on the quality of the waters of the Delta
and the Stockton Ship Channel. These withdrawals create a net southward
flow of Sacramento River water which intercepts the seaward flow of the
poorly oxygenated water in the Ship Channel and draws it south. During
periods of significant pumping, this southward flow limits the
progression of the poor quality San Joaquin River water to the vicinity

11



of Medford Island. Pumping also tends %o reduce the net seaward flow in
the San Joaquin River and ship channel by drawing water west through 01d
River. The reduced net flow tends to exacerbate the quality problems of
the ship channel by reducing the flushing rate.

12
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Table I1I-1
SHIP CHANNEL CROSS-SECTION AREAS

sQ FT 1/ 2
: < fOR PROJECT PREDICTIONS
: FOR : : 1982 : 1982
+  CALIBRATION : . SOUNDINGS :  SOUNDINGS
: AND : _ - TRUNCATED : TRUNCATED TO
+  VERIFICATION : : TO : 35-FOOT
: 1977 : 1982 «  30-F0OT : DREDGE
RIVER MILE : SOUNDING . SOUNDING : DEPTH . TEMPLATE
25.5 3/ 16,958 13,698 14,898
26.4 3/ 15,740 13,330 14,555
27.4 3/ 21,500 19,482 20,707
- 28.5 3/ ' 25,188 24,139 25,314
29.6 3/ 11,500 11,644 . 12,819
30.3 3/ 17,826 - 16,580 11,755
1.6 3/ 14,250 13,506 - 14,17
32.21 13,000 12,13 11,942 13,127
32.50 16,241 14,482 14,124 15,849
12.97 14,838 14,536 13,536 14,867
33,39 14,764 14,990 13,995 15,391
33.73 13,534 13,810 13,301 . 15,317
34.03 13,100 12,302 11,545 , 13,356
34 .35 14,346 14,055 12,599 "~ 15,098
14 .65 13,182 - 12,980 - 12,113 14,706
35.03 - 11,605 11,685 1,076 12,496
35.40 11,1756 13,023 12,653 13,799
35.71 11,724 11,572 10,600 11,172
36.02 11,210 10,831 10,060 11,222
36,32 9,944 9,925 9,301 10,915
36.70 12,352 12,738 - 12,482 13,741
37.00 11,484 4 12,054 11,1175 12,638
37.38 11,744 11,613 11,097 12,565
37.67 14,194 13,7191 13,364 14,658
37.98 14,201 14,672 14,246 15,430
18.44 15,033 15,414 14,393 15,741
98.66 13,151 13,199 12,452 14,086
19.04 _ 13,010 12,913 12,507 13,785
39,34 11,343 11,403 12,840 4/ 14,090 2/
39.57 11,082 . 10,903 12,260 &/ 14,160 3/
39 87 13,331 13,250 11,503 13,438
40.02 13,229 13,664 11,813 13,549
40.25 12,756 13,581 11,636 13,569
40.48 13,293 14,050 11,859 13,744
40.63 37,133 39,487 32,613 36,987
40.85 16,291 16,291 ‘ 16,291 16,291

1/ gelow zero sounding 1ine, which is 2.5 feet above COE datum at Golden
Gate {1.1 feet below mean sea level).

2/ Average of double planimetered areas.
3/ No soundings were made in 1977 between River Miles 22—31. as maintenance

dredging was limited to the area above RM 31.

4/ settiing Basin depth was authorized at 35-foot depth.
5/ Settling Basin depth 45 now authorized to 40-foot depth.
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CHAPTER IV
MODEL CALIBRATION AND VALIDATION

IV.1 MODE OF OPERATION

The hydrodynamic model has two modes of operation. In the
repetitive dynamic = solution mode, the hydrodynamic model is run for two
or more tidal cycles with the same boundary conditions (i.e., one tide
and one set of hydrology) until a repeating solution is reached. This
mode is used to provide a solution for an average set of conditions or
for the initial solution for a time series solution. The time series
mode is used to provide a dynamic history of Delta hydrodynamics over an
extended time period. In this mode, each day 1is simulated only once
using a tide and hydrology which is updated daily.

Unlike the hydrodynamic model the water quality program has only
one mode of operation. The program accepts as input the hydrodynamic
solution at hourly intervals and progresses through the simulation
period. If the quality model is using a repeating hydrodynamic solution
as input, the interface tape is rewound when the end is encountered and
the hydrodynamic solution is reused. Other guality boundary conditions
(i.e., inflow quality, exchange quality, benthic source/sink rates,
etc.) may be updated at any daily intervals.- .

For the hydrodynamic calibration and validation effort, each period
began with one repetitive hydrodynamic solution to provide a good
starting point. The quality model was also run several days using the
repetitive hydrodynamic solution to minimize effects of the dnitial’
conditions. Several days hydrodynamic/water quality simulation using
the time series mode followed.

IV.2 HYDRODYNAMIC MODEL CALIBRATION

The calibration process involves adjusting one or more mode
parameters until adequate agreement between the simulation results and
prototype measurements is achieved. In the San Francisco Bay Delta
system, the most abundant data suitable for calibration is tidal stage.
The model parameter adjusted during the calibration process was the .
Mannings roughness coefficient.

Model calibration was accomplished by simulating the entire
.calibration period followed by -adjusting the Mannings . roughness
coefficients in selected channels to affect tidal magnitude and phasing.
Model simulation followed by roughness coefficient adjustment was
repeated until reasonable agreement was reached between the computed and
observed tidal stage throughout the Delta with emphasis on the tidal
stage data nearest the project area. The final roughness coefficients
of the calibrated model were within the generally accepted range for

17



slow moving natural and man-made channels and ranged from 0.025 for well
maintained straight channels to 0.045 for the more natural meandering
channels.

In addition to the tidal stage calibration, DWR's estimates for the
san Joaguin - 01d River flow split and the cross Delta channel flows
were compared with computed values for the periods when these data were
ayailable. The San Joaguin River flow below 01d River was based on a
nomograph developed by the OWR which relates total San Joaquin River
flow to State and Federal export rates. During the periods when the 01d -
River barrier was in place, field observations were relied on for the
flow estimates. The estimated Delta Cross Channel and Georgiana Slough
flows are reported in the Day Flow Summary (3). '

calibration Period One

Model calibration was performed for two time periods. The first
period, June 8 through dJune 12, 1978 was selected because the San
Joaguin River inflow was relatively high and provided an opportunity to
insure that the model adequately represented net flow through the Delta.
In evaluating the water quality in the Stockton Ship Channel, net flow
north through the Delta from the San Joaquin River is very 1important
since it affects the flow residence time {i.e., the length of time the
water has resided within the system), the flow volume and associated
water guality entering the Stockton Ship Channel. The hydrology for
this period is summarized in Table IV-1. To demonstrate the calibrated
model, the computed stage and the observed tidal extremes have been
plotted for the DWR tide stations shown in Figures IV-1 through IV-4.
These plots show that both the magnitude and phasing of the tidal
extremes are reproduced reasonably well. Simulation was made to be best
ot stations in the immediate vicinity of the Stockton Ship Thannel
(Figure IV-3). .

Calibration Period Two

The second period, September 11 through September 25, 1974, was
selected because it was typical of later summer conditions, and the 01d
River barrier was constructed. Water quality problems commonly occur in
the Stockton Ship Channel during late: summer Tow flows. During the
second period, low oxygen levels weré measured in the Stockton Ship
Channel near Stockton. The hydrology for this calibration period is
summarized in Table IV-Z.

Construction of the barrier was started on September .12 and
proceeded normally - until: September 18. At that time unexpected high
flow (3700 cfs) in the San Joaquin River forced nearly complete closure
of 01d River to prevent Tloss of the structure due to erosion. On
September 21 and 22 a notch was cut in the structure to obtain the
desired diversion. During the closure construction, it was estimated
that 85% of the total flow continued down the San Joaquin during the
period of September - 18 through September 20 and that 45% of the Tlow
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continued down the river after the notch was cut in the structure (8).
The effects of the 01d River barrier were simulated by varying the
Mannings roughness coefficient of the channel connecting nodes 150 and
162. A series of simulations were performed using various Mannings
roughness coefficients until reasonable agreement between the computed
and estimated flow in the San Joaquin River was achieved.

The calibration simulations were performed with the Mannings
coefficient shown on Table IV-3. The table also shows the estimated and -
computed flow in the San Joagquin River below 01d River. Reasonable
agreement between the computed-and estimated San Joagquin River flow
below 01d River was reached for all days. The results of the tidal
stage calibrations are shown in Figures IV-5 through 1IV-10. Figures
IV-5 through IV-7 show the simulated and the observed stage at two hour
intervals for six stations on the San Joaguin River and Stockton Ship
Channel. Figures IVv-8 through IV-10 show the same observed stages
plotted against the corresponding computed value. Note that these
points should fall on a forty-five degree line for perfect agreement.
These figures show that the simulated -stage magnitude and phasing
matches the observed values at all six locations on the San Joaquin
River and in the Stockton Ship Channel reasonably well.

Iv.3 HYDRODYNAMIC MODEL VALIDATION

The model validation process includes simulation of a period not
used for calibration and comparison of results with observed data. The
model can be considered validated and ready for use as a predictive tool
if the simulation compares favorably with observed data.

The September 26, 1978 through October 10, 1978 period was selected
for model validation. During this period, the old river barrier was not
in place, however, special operations were initiated in an attempt to
alleviate low dissolved oxygen levels in the San Joaquin River below
Stockton. During this period, the Delta pumps were turned off for 4
days and releases to the Mendota Pool increased in an attempt to force
more water north in the San Joaquin River past the 01d River bifurcation
and raise dissolved oxygen levels. HNo attempt was made during this
study to evaluate the success of this unusual operation. The hydrology
for the validation period is summarized in Table IV-4.

The results from the tidal stage validation are shown 1in Figures
IV-11 through 1V-16. Figures IV-11 through IV-13 show the simulated
stage and the observed stage at two hour intervals for five stations on
the San Joaquin River and Stockton Ship Channel.. Figures IV-14 through
IV-16 show the same observed stages plotted against the corresponding
computed value. A review of these figures shows that the model
represents tidal stage very well at these gage locations.

In addition to the above stage comparisons, the computed net cross
Delta channel and Georgiana Slough flow and San Joaquin River flow below
01d River were compared with the flows estimated by the DWR (9). The
computed and estimated flows are shown in Table IV-5. The computed and

19



i
‘z
s
?

estimated net flows through the cross Delta channel are almost
identical. The match between the computed and estimated flows in the
San Joaquin River are not as close but are within acceptable limits.

The good agreement between the computed and observed stages at all
locations indicates that the hydrodynamic model is adequately calibrated
and ready for use in the evaluation of the'effects of the Stackton Ship
Channel dredging project. T

IV.4 WATER QUALITY MODEL CALIBRATION

The water quality model was calibrated to dissoived oxygen
measurements taken by the California DWR and the City of Stockton during
the test periods. Sampling trips by the DWR were made starting near
sunrise (8,9) to minimize the influence of photosynthesis on DO
measurements. The sampling days were generally selected such that the
low water slack tide condition occurred at the time the samples were
collected. The date and time of the sampling cruises were selected in
an attempt to measure the lowest level during the day. Dissclved oxygen
was generally measured at 3 feet below the surface and 3 feet abave the
bottom.

Dissolved oxygen measurements are subject to variability from
several sources. Although the first samples were taken early in the
day, the last sample may have been collected much later in the day' due
to travel time constraints. The model was calibrated to simulate
"average" DD quality. This "average" predicted value is similar to an
accurate depth and width integrated sample taken simultaneously at each
node. Depth-width integrated averages were approximated by comparison
with the available data, described above.

The model relies on 31 physical, chemical and biological
coefficients to simulate the responses and interactions of temperature
and the 10 water quality parameters. Of these 31 coefficients, some are
well defined by specific chemical relationships. Others are highly
variable and are dependent on environmental conditions and specifics of
the material represented by the parameter (i.e., types of phytoplankton
represented by ALGAEl). Calibration was accomplished by a series of
simulations in which one or more of the i11 defined coefficients were
adjusted until the simulated DO approximated the observed DO range. The
coefficients for the calibrated model are shown in Table IV-6. The
table includes a notation of the coefficients which were adjusted during
the calibration process along with the normal range of values reported
in the literature (4, 5, 6).

The inflow.quality and tidal -exchange quality for the calibration
and validation period are summarized in Table IV-7. Meteorological data
are input to the model at 3-hour intervals to account for diurnal
variation. These data averaged for each day of simulation are
summarized in Table IV-8.
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calibration Period

The period September 1 through September 26, 1974 was selected for
water quality model calibration. During the calibration period, DO
measurements were made by the DWR an September 6, 17 and 26, and by the
City of Stockton on September 4, 18 and 26.- Sampling locations for the
test period are shown in Figure IV-17.

An examination of the DWR measurements shows that the minimum DO in
the Stockton ship channel was about 4 mg/L on the 6th and declined to a
low of about 1.5 mg/L on the 17th. The minimum DO then began to raise
and was again at approximately 4.3 mg/L by the 26th. This rise can be
attributed in part to increased net flows in the San Joaquin River
resulting from the partial closure of 01d River. The data collected by
the City of Stockton indicates that the minimum DO was approximately 2.5
mg/L on September 4 and 2.0 mg/L on September 18.

The inflow quality of the San Joaquin River and other major
tributaries was based on one or two measurements taken during the month
of September. The Stockton waste water facility effluent was based on
plant operation data. HNo attempt was made to vary the quality of any of
these inflows during the calibration.

The calibrated model does not match extreme variations abserved
during the test period due 1in part to the use of average inflow
conditions. Rather, the model was calibrated to approximate averdge
conditions in the Stockton Ship Channel. Predicted low water slack tide
DO profiles are plotted with observed near surface and bottom DO
concentration in Figure 1V-18. The observed minimum DO concentration on
September 4, 6, 17 and 26 were 2.5, 4.0, 1.5 and 4.3 mg/L. Such
variability of daily extremes  is not unusual over a short test period
due to constantly varying environmental conditions,. No attempt was made .
to match the variable DO profile by varying the inflow quality since
there were not sufficient measurement during the calibration period.
Selection of variable inflow data would have resulted in a better fit of
the observed DO; however, the inflow quality would have become a
calibration parameter. - )

IV.5 WATER QUALITY MODEL VALIDATION

The calibrated model was validated using data from the September
26, 1978 to October 10, 1978 test period. During the validation period,
DO measurements were made by the DWR on September 29 and October 3, ©
and 10, and by the City of Stockton on October 4 and 6. Both the DWR
and the City measurements were made near low water slack. Near surface
and bottom measurements were made where variations in concentration over
the water column existed except for the October 6 city measurement which

was near surface only.

The average inflow and exchange quality were estimated from
available data and the model was run for the 15 day period without
varying any model parameters. Low water slack tide predicted DO
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profiles are plotted with observed near surface and bottom
concentrations in Figure IV-19. The calibrated model matches observed
D0 ranges well on October 2, 6 and 10 of the validation period. The
match between the predicted and observed DO profile is not as good on
September 29, however, this date is only 3 days from the beginning of
the simulation and the dnitial conditions <are TVikely affecting the
results. Predicted daily extremes are plotted with DWR measurements of
the near surface and bottom concentrations in Figure IV-20. The
computed range in concentration during the day is not directly
comparable to the range over the water column. Therefore, this figure
is only intended to give an indication of the range-in concentration due
to diurnal effects and DO stratification. This figure can be used to
relate the computed diurnal range to the average DO levels presented in
the various oxygen plots keeping in mind that this variation is due to
both the variation in photosynthetic activity and the tidal excursion of
the DO sag.

In the turning basin, oxygen was sharply stratified during the
validation pericd with near surface DO levels above saturation and near
pottom levels as low as 2 mg/L. The sharp stratificatien is caused by
flow velocities too low to force vertical mixing and high levels of
photosynthetic activity coupled with a high oxygen demand throughout the
water column. The simulated vertically mixed DO concentration during
this period ranged from 4 to 5 mg/L.

Additional water quality parameters simulated by the model were not
calibrated due to insufficient data. However, predicted concentrations
for nitrate-nitrogen, phosphate-phosphorous, total coliform, detritus,
ultimate carbonaceous BOD, ammonia-nitrogen, diatoma, and other algal
species were within the ranges typically observed during September and.
October in the Stockton $hip Channel.
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EFFECTS OF THE OLD RIVER BARRIER

TABLE IV-3

ON SAN JOAQUIN RIVER FLOWS FOR THE SEPTEMBER 11 THROUGH
SEPTEMBER 25, 1974 CALIBRATION PERIQD

SAN JOAQUIN RIVER FLOW

© COMPUTED

Joiggln BELOW OLD RIVER MANNINGS "n"  OLD RIVER

DATE RIVER Estimated* Computed** NODE 162 TO 150 FLOW* *
Sep 11 2390 400 330 0.030 1880
Sep 12 2560 250 621 0.040 1780
Sep 13 2500 500 800 0.055 1550
Sep 14 2450 1000 823 0.065 1400
Sep 15 2420 1050 290 0.070 1320
Sep 16 2400 1050 900 0.075 1290
Sep 17 2420 1700 1360 0.150 790
Sep 18 2680 2100 1870 0.250 540
Sep 19 3150 2500 2450 0.350 440
Sep 20 3500 2900 2810 0.350 480
Sep 21 3630 2400 2510 0.150 1010
Sep 22 3620 1900 2070 0.090 1460
Sep 23 3650 1600 1750 0.060 1830
Sep 24 3480 1550 1670 0.060 1770
Sep 25 3520 1500 1660 0.060 1780

* Flow rates estimated by individuals involved in the construction

supervision of the 01d River Barrier (8).

**Flows represent the average during the 24 hour period and are
affected slightly by different tidal stages at the beginning of
the day.
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TABLE IV-5

COMPUTED AND ESTINATED FLOWS

DELTA CROSS CHANNEL AND G

SEPTEMBER 26 THROUGH OCTOBER

IN THE SAN JOAQUIN RIVER AMD

EORGIANA SLOUGH DURING THE

10, 1978 VALIDATION PERIOD

SAN JOAQUIM RIVER
BELOW OLD RIVER

DELTA CROSS CHANNEL
AND . GEORGIANA SLOUGH

DATE Estimated* Computed Estimated**  Computed
Sep 26 - 540 6886 6784
Sep 27 -- 687 6837 6675
Sep 28 476 634 6778 6696
Sep 29 443 568 6719 6715
Sep 30 446 518 6749 6787
Oct 1 434 507 6690 6778
oct 2 939 665 6632 6622
Oct 3 981 715 6573 6590
Oct 4 1526 1075 6339 6316
Oct 5 1303 891 6251 6198
Oct 6 460 615 6251 6301
Oct 7 435 522 6251 6329
Oct 8 435 507 6192 6255
Oct 9 437 £09 - 6280 6392
Oct 10 611 797 6075 6218

* Estimated by the DWR (9).

Based on DWR nomograph made from
26_hour tidal cycle measurements.

**fstimates provided by the DWR in the Day Flow Summary (3).
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 TABLE IV-6
CHEMICAL, PHYSICAL AND BIOLOGICAL COEFFICIENTS

e CALIBRATED
COEFFICIEMT (4,596) VALUE
Nitrogen fraction of phytoplankton .02-.09 0.030
- Phosphorus fraction of phytoplankton .005-.012 0.012
‘Nitrogen fraction of detritus | .02-.09 0.080
Phosphorus fraction of detritus .002-.012 0.012
Settling rate for Algae 1, M/day 0-2 0.500*
. -Settling rate for Algae 2, M/day 0-1 0.150*
7. petritus settling rate, M/day 0-2 0.250%
‘BOD decay rate, 1/day .1-.3 0.200*
‘Detritus decay rate, 1/day .001-.05 0.040%*
.Ammonia decay rate, l/day .04-.2 0.100*
" Coliform die off rate, 1/day .5-3. 1.000
Temperature adjustment for BOD decay 1.03-1.06 1.047
Temperature adjustment for ammonia decay 1.02-1.03 1.022
- Temperature adjustment for coliform die off 1.03-1.06 1,040
Temperature adjustment for detritus decay 1.02-1.04 1.025
Ratio of oxygen uptake to ammonia decay 4.6 4.600
Ratio of oxygen uptake to detritus decay 1.2-2.0 1.600
Ratio of oxygen production to phytoplankton
photosynthesis 1.6 1.600
Ratio of oxygen uptake to phytoplankton
respiration 1.6 600

Light extinction coefficient for detritus, -mist .01-.25
Light extinction coefficient for phytoplankton, .15-.25

coppnOoO o
o]
o
o
*

Maximum growth rate for Algae 1, 1/day Mmye  1.-3.
‘Maximum growth rate for Algae 2, 1/day 1.-4. 500*
Respiration rate for Algae 1, 1l/day .05-.3 200*
Respiration rate for Algae 2, 1/day .05-3 250*
Light half saturation for Algae 1 growth,

kcal/m?/sec .002-.004 0.002*
Light half saturation for Algae 2 growth,

kcal/m?/sec .003-.006 0.006*
Nitrogen half saturation for Algae 1 growth, _
" mg/L ' ) .03-.10 0.050
Nitrogen half saturation for Algae 2 growth,

ma/ L .05-.20 0.200
Phosphorus half saturation for Algae 1 growth,

mg/ % ' .02-.05 0.020
Phosphorus half saturation for Algae 2 growth,

mg/ L .03-.06 0.050

* Yalues selected during the calibration process
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TABLE IV-8. DAILY AVERAGE METEOROLOGICAL CONDITIONS FOR THE
QUALITY MODEL CALIBRATION AMD VALIDATION PERIODS
(AVERAGE OF 3 HOUR OBSERVATION AT STOCKTON WSQ)

Dry Bulb  Wet Bulb Wind Atmospheric
Cloud Cover Temp Temp Speed Pressure
Date (fraction) (°C) (°C} (m/sec) (mb)

i Calibration Period

“sep 1, 1974 0.04 23.5 12.7 3.4 1010
~Sep 2, 1974 0.00 23.9 11.7 3.7 1011
 Sep 3, 1974 0.00 23.0 10.7 4.2 1011
Sep 4, 1974 0.00 24.7 12.5 3.3 1010
Sep 5, 1974 0.00 26.8 12.7 2.9 1010
Sep 6, 1974 0.00 28.5 12.2 3.4 1012
Sep 7, 1974 0.00 27.6 11.3 3.7 1013
~Sep 8, 1974 0.00 24.4 10.5 4.0 1012
Sep 9, 1974 0.00 25.2 1z.1 3.8 1011
Sep 10, 1974 0.00 26.9 14.1 2.6 1009
Sep 11, 1974 0.00 26.1 9.7 4.4 1007
Sep 12, 1974 0.00 23.7 11.1 4.5 1009
Sep 13, 1974 0.00 20.7 11.7 - 4.2 1011
Sep 14, 1974. 0.00 20.7 12.8 3.6 1014
Sep 15, 1974 0.00 22.2 12.2 3.4 1017
Sep 16, 1974 0.00 22.2 11.9 3.1 1016
Sep 17, 1974 0.00 24.0 11.8 3.0 1013
Sep 18, 1974 0.00 23.8 11.5 2.8 1012
Sep 19, 1974 0.00 22.1 11.6 3.6 1013
Sep 20, 1974 0.00 23.2 10.7 3.2 1013
Sep_2l, 1974~ 0.00 23.6 11.0 3.1 1010
Sep 22, 1974 0.00 22.2 12.0 3.5 1007
Sep 23, 1974 0.00 22.0 11.5 3.3 1006
Sep 24, 1974 0.15 23.9 11.3 3.0 1009
Sep 25, 1974 0.45 20.0 10.9 4.0 1014
Sep 26, 1974 0.04 18.9 11.6 3.4 1013
validation Pericd :
Sep 26, 1978 0.71 22.0 11.3 4.7 1015
Sep 27, 1978 0.29 21.4 11.6 3.5 1017
. Sep 28, 1978 0.19 22.9 10.1 2.8 1016
. Sep 29, 1978 0.00 24.2 10.8 1.7 1014
'~ Sep 30, 1978 0.02 25.7 11.6 1.8 1015
: Oct 1, 1978 0.00 25.0 10.9 3.2 1014
Dct 2, 1978 0.01 24.8 9.4 3.3 1013
.0ct 3, 1978 0.00 24.7 9.3 2.4 1012
et 4, 1978 0.00 24.5 10.5 2.2 1012
“0ct 5, 1978 0.00 21.4 11.2 3.9 1014
- Oct 6, 1978 0.00 18.0 10.7 3.4 1017
Oct 7, 1978 0.20 18.8 9.8 2.4 1016
Oct 8, 1978 0.06 20.9 9.2 2.2 1014
- dct 9, 1978 0.01 19.9 10.4 2.8 1016
Oct 10, 1978 0.00 20.4 10.2 2.6 1019
Oct 11, 1978 0.00 21.5 9.0 1.3 1017
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CHAPTER V

WATER QUALITY MODEL SENSITIVITY AND
. EFFECTS OF STOCKTON SHIP CHANNEL DREDGING

V.1 WATER QUALITY MODEL SENSITVITY ANALYSES

The intent of the censitivity analysis was to determine the
magnitude of the effect of various enyironmental factors on the model
representing the dissolved oxygen resources of the Delta and Stockton
ship channel, Based on a good understanding of what affects DO in the
Delta and experience gained in the calibration phase of this project,
the models sensitivity to the following model characteristics were
examined.

1) Depth of light penetration

2) Benthic BGD :

3) Stockton wastewater facility effluent quality (SRWHWCF)
4) San Joagquin River quality upstream of Stockton

5) DO coupling with phytoplankton and detritus

6) Method of calculating inflow estimates

Sensitivity analyses  were carried out for  the September
26 - Octoper 10, 1978 test period. 1977 channel geometries were used.

‘Depth of Light Penetration

Algae populations are 1ight-limited in the Stockton Ship Channel.
Depth of light penetration is input to the water quality model on a node
by node basis, or by zones. Inaccurate specification of the light
penetration parameter can cause simulated algae populations to boom or
bust.

Figure V-1 illustrates the effects of doubling the 1% Tight
penetration depth from 2 feet to 4 feet. Algae 1 (diatoms) survive
farther downstream in the channel when 1light penetration increases.
Oxygen levels are consistently higher throughout the channel. It is
interesting to note that the largest increase in both Algae 1 and DO
occur below mile 32. Increased photosynthetic activity in the northern
pelta result in higher concentrations of these parameters in the water
being drawn south from the Sacramento River to the State and Federal
pumps. It appears that improved water clarity would have the greatest
effect in the shallower channels and that the Stockton ship channel is
too deep to be affected by a change in clarity of this magnitude.
Increases in the 1% light penetration significantly beyond 4 feet would
be required to affect a major increase in the algae and OO
concentrations in the Ship Channel.

Carbonaceous BOD is unaffected by the change in the depth of 1%
1ight penetration. Algae 2 was not significantly.affected by 1ight
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penetration since most of the phytoplankton of SRWWCF origin remained in
- the Ship Channel where photosynthetic activity was less sensitive to the
; doubling of light penetration.

Benthic BOD

Benthic BOD loads are specified as benthic sink rates on a node by
node or zonal basis. Estimates of benthic BOD are highly variable but
generally range from 100 to 2000 mg/m?/day for running river sections
(4). Measurements by the California Department of Fish and Game and the
EPA {7} indicated that the benthic BOD ranged from near zero to 1000
mg/m?/day _in the ship channel. Figure V-2 illustrates the effect of
1000 mg!mzlday of benthic BOD in the ship channel from Webb Tract to the
Turning Basin (nodes 11 to 31). The maximum decrease in the simulated
dissolved oxygen concentration was aproximately .6 mg/L. This
relatively small impact coupled with the uncertainty of the magnitude
led to the decision to calibrate-the model assuming zero benthic demand.
Carbonaceous BOD and algae were unaffected by the addition of benthic
BOD.

Stockton Regional Waste Water Control Facility Effluent Quality

The SRWWCF effluent prior to upgrading in 1978 was a major source
of phytoplankton, suspended solids, nutrients and BOD. To evaluate the
impact that the SRWWCF had on water quality within the ship channel, the
effluent water quality was made similar to the San Joaquin River quality
upstream of the discharge location. Using the wupstream San Joaquin
River quality had the effect of completely removing the discharge
without requiring rerunning the hydrodynamic simulation with  the
discharge removed. Results are presented in Figure vV-3. Algae 2 and
detritus are reduced significantiy and the characteristic oxygen sag in
the channel 1is improved. The. minimum computed DO concentration is
increased from 4.2 mg/L to about 5.7 mg/L by removing the effluent. The
Algae 1 actually increased s1ight1ly when the SRWWCF was removed due to
the decrease in Algae 2 and detritus. The decrease in algae and
detritus of SRWWCF origin increased the depth of light penetration which
stimulates phytoplankton growth. This  analysis demonstrates  the
importance of the SRWWCF discharge on the oxygen resQurces of the
Stockton Ship Channel and the imporiance of accurate specification of
the water quality of the effluent.

San Joaquin River Quality

Similarly, the San Joaquin River inflow is a major source of
material which contributes to the degradation of DO in the ship channel.
Figure V-4 illustrates the result of San Joaquin River guality being
made similar to Sacramento River quality at Greens Landing. Algae 1 and
BOD are significantly decreased. Oxygen sad ijn the ship channel was
greatly reduced with the minimum computed DO concentration increasing
2.5 mg/L from 4.2 to 6.7 mg/L.
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DO Coupling with Phytoplankton and Detritus

Results reported above indicate that algae concentrations from
inflows make a significant contribution to the dissolved oxygen sag
observed in the ship channel. To quantify the significance of algae and
detritus (dead algae and other organic material), these parameters were
uncoupled from dissolved oxygen by setting the appropriate model
coefficients to zero. Resulting profiles are plotted 1in Figure V-5,
The uncoupling of algae and detritus increases the minimum DO
concentration from 4.2 mg/L to about 6 mg/L. This analysis shows that
approximately half of the D0 deficit can be attributed to phytoplankton
and other particulate organic matter. The remaining DO deficit is
caused by the carbonaceous BOD and nitrogenous BOD {ammonia decay). -BOD
and Algae 1 and 2 concentrations were unaffected since only the coupling
with DO was removed.

Calculation Method for Inflow Estimates

- The proceeding evaluation of model sensitivity demonstrates that
the San Joaquin River and SRWWCF discharge have a profound effect on the
DO within the ship channel. The San Joaquin quality is subject to
significant variation over time and the SRWWCF treatment plant has been
upgraded since 1978. To evaluate the model's sensitivity to San Joaquin
River quality within the range of the observation data and the before
and after treatment plant upgrade quatity, the following evaluation was
mada,

Three sensitivity runs were made using different estimates of San
Joaquin River quality and Stockton wastewater effluent quality. Three
alternative estimates were compared with the original inflow data base
(CASE.1). The four sources of inflow quality data are described below:

1) CASE.1 - Typical inflow values weré selected from
September and October 1978 STORET data used for the

validation simulations.

2) CASE.2 - DWR data at Mossdale Bridge from September and
October, 1974-1981, was arithmetically averaged., Dry year
1977 was excluded. Only PO4-P, detritus, BOD, NH;-N, DO,
Algael and Algae2 at Mossdale Bridge were changed. All
other inflow specifications same as CASE.1 (see Table V-1
and Table V-2).

3} CASE.3 - Worst case DWR data at Mossdale Bridge were
selected. Data for September 25, 1978 was used for
detritus, NH;-N, DO, Algael, and Algae2. A1l  other
inflows are the same as CASE.l.

4) CASE.4 - The Corps supplied flow weighted means of PO,-P,
detritus, BOD, NH,-MN, and Algae2 for SRWWCF effiuent after
the facility upgrade, A1l other inflows are the same as

CASE.1.
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Results of the three sensitivity runs are shown in Figures V-6
_through V-8. In each case, the alternative inflow estimates are
compared with the original  validation inflow quality. Average
concentrations from the DWR nine year period of record did not differ
significantly from STORET derived concentrations for the San Joaquin
River at the Mossdale Bridge (Table V-2). The resulting profiles of DO,
algae, and BOD were also similar (Figure V-6). The worst case estimate
of San Joaquin River quality resulted in significantly lower Do
concentrations in the ship channel. With the worst case estimates of
- San Joaquin River inflow quality (see Figure y-7), the minimum computed
DO in the ship channel was reduced to 3.2 mg/L.

Results of the SRWWCF upgrade are presented in Figure v-8. Algae 2
is significantly reduced after the upgrade. Consequently, dissolved
oxygen downstream of the SRWWCF is increased. _

Inflow quality estimates have a dramatic effect on model results.
For dissolved oxygen simulation, particular attention was given to algae
concentrations, detritus, and B0D.

v.2 EFFECTS OF SHIP CHANNEL DREDGING ON HYDRODYHAMICS AND WATER QUALITY

Model Representation

The San Joaguin River and Stockton Ship Channel geometry wused in
the calibration and verification phase of this project was based on the
1977 Corps soundings. Tnhese soundings were used since they were most
representative of the conditions which prevailed during the 1978
calibration period and 1974 validation period. For the dredging effects
evaluation phase of the project the channel geometry was based on the
1982 Corps soundings. Two sets of channel geometry were derived from
these soundings. For the pre-dredging predictions, the 1982 soundings
were truncated at 30 feet except in the sediment trap where the
soundings were truncated at 35 feet. The 30 and 35 foot depths were the
authorized depth of the channel and sediment trap prior to the 35 and 40
foot authorization. To represent post-dredging conditions the 35 foot
(40 foot in " the cediment trap) dredging template was superimposed over
the 1982 soundings. : '

Hydraulic Effects

Simulations were performed under pre-dredging and post-dredging
conditions to determine the hydraulic impact of the deeper channel.
 Figure V-9 is a comparison of the computed stage and velocity for a

typical node and channel. MNote that the computed stages fall on the 45
degree line indicating that the channel deepening has a negligible
effect on tidal stage and phase. The effect on velocities, however, is
significant. The plot shows that the post-dredging velocities are
reduced throughout the tide cycle, The comparisons of the computed
velocities fall on a straight line indicating that the amount of the
reduction is constant throughout the tidal cycle. The post-project
velocity for this channel is approximately g6% of that for the

54



pre-dredging case. The reduction in velocity coupled with no change in
stage is typical of the other channels and nodes representing the
Stockton Ship Channel.  Since the dredging has a negligible effect on
tidal stage and therefore does not change hydraulic gradients, channel
deepening will have only a very minor effect on the hydrodynamics of the

other Delta channels.

The effects of dredging on the net flow, maximum velocity, ratio of
the maximum velocity and the flow induced reaeration coefficient (based
on the 0'Connor and Dobbins retationship) in the channels near Stockton
are shown in Table V-3. A review of this table shows that the net flows
are almost unaffected by the channel deepening, however, the velocities
and reaeration coefficient are reduced typically 10%  and 20%
respectively. The reduction in velocity will increase the hydraulic
residence time within the ship channel. The decreased residence time
coupled with the reduced reaeration will 1ikely reduce oxygen levels in
the Stockton Ship Channel.

Water Quality Effects

To quantify the effects of the channel deepening on water quality
the model was run for pre- and post-dredging conditions using the model
representation based on the 1982 sounding data. The water quality model
was run for both the September-October 1978 period and the September 1
through 26 1974 period. The computed daily average dissolved oxygen
concentration on October 10, 1978 and September 26, 1974 for the pre-
and post-dredging conditions and infilow data used for calibration and
validation are presented in Figure V-10. Final day results were used to
minimize the influence of specified jnitial conditions. Note that for
both days the maximum reduction in DO due to the deeper channel is
approximately 0.5 mg/L.

These results shown in Figure V-10 are for a 30 foot and 35 foot
channel section. Many of the channels are already deeper than the 30
foot authorized depth, therefore the actual reduction in DO due to
deepening to 35 feetl from the existing condition would be less. Figure
y-11 shows the D0 profiles for the existing channel and the 35 foot
channel. The maximum reduction due to dredging relative to existing

conditions is approximately .25 mg/L.

The sensitivity analyses indicated that specified inflow quality
can have a large effect on simulation results. To evaluate the range in
D0 which would be expected under post dredging conditions, the "worst
case" (see Table V-2) San Joaquin River quality was simulated under post
dredging channel conditions. In addition to the variation in San
Joaguin River quality; the SRWWCF plant has been upgraded since 1978,
therefore pre and post upgrade effluent quality was simutated. The
effects of these variations in San Joaquin River quality and SRWWCF
effluent quality on DO within the ship channel are shown in Figure V-12.
The results for October 1978 hydrology and these three inflow quality
conditions are compared with the results for average 1974-1981 (1977
excluded) San Joagquin River quality and average pre-upgrade SRWWCF
effluent quality.
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Post-dredging simulation results for worst case San Joaquin River
quality shows that the average dissolved oxygen concentrations would
have been reduced to a minimum of 3.0 mg/L with the SRWWCF operating
under 1978 conditions.

The effluent quality of the SRWWCF upgraded plant improved
dissolved oxygen concentrations in the ship channel significantly. Even
with the worst case San Joaguin River quality, the minimum DO in the
ship channel would be above that computed for the 1978 base conditions.
The minimum DO computed for post-dredging conditions with the upgraded
treatment plant is 5.2 mg/L and 4.3 mg/L for the average 1974-1981
(excluding 1977) and worst case "San Joaquin River inflow quality
respectively. :

V.3 DISSOLVED OXYGEN REQUIREMENTS FOR REVERSAL OF DREDGING EFFECTS

In order to balance the reduced oxygen levels predicted for the
dredged channel, oxygen could be added to the ship channel system.
several alternatives are available to increase oxygen levels in the ship
channel including flow alteratiaon and mechanical aeration.
Determination of the most: feasible method for oxygen enhancement
however, is beyond the scope of this contract.

To provide and estimate for the amount of additional oxygen needed
to counter the effects of the deeper ship channel, the model was run for
the dredged channel configuration and 2 tetal of 7500 pounds of oxygen
added per day to a limited reach of the Stockton Ship Channel. The area
of forced oxygen input was bounded by river miles 33 and 38 (nodes
21-25) and coincided with the area of maximum computed sag on October
10, 1978. Results for both 1974 and 1978 test period hydraulics and
inflow quality are shown 1in Figure V-13. The 7500 pounds of oxygen
added by induced aeration increased the daily average minimum 13
approximately 1.1 mg/L from 4 “mg/L to 5.1 mg/L for 1978 test period.
Assuming the increase 1is proportional to the amount of oxygen input over
the 1.1 mg/L range, approximately 3400 pounds of oxygen per day would be
required to counter the .5 mg/L reduction in DO caused by the increased
depth in the Stockton Ship Channel. :

Proper management will be important 1in prescribing an aeration
plan. This fact is demonstrated by the simulation results for September
26, 1974, which indicates an addition of 7500 pounds of oxygen per day
between river miles 33 and 38 would result in an increase in the minimum
p0 of only .65 mg/L. The effect of aeration was less pronounced since
the low point in the DO sag occurred further downstream due to larger
net San Joaquin River flows. Forced aeration would be the most
effective if the 1location and intensity could vary with the hydrology

conditions to coincide to the region of maximum DO depression.
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TABLE V-1

DEPARTMENT OF WATER RESOURCES
MOSSDALE BRIDGE DATA (MODE 163)
SEPTEMBER AND OCTOBER, 1974-1581

Dissolved Dissolved
Chior 2 Pheo a NH4-N Orthe-P0,-P Do BOD-5 day

Time Period  (ng/L)~  (ng/L})  (mg/L) (mg/L) (mg/L)  (mg/L)
9. 4-74 37.00 16.00 0.04 0.07 7.70 3.50
9-18-74 50.00 16.00 0.03 0.07 7.70

10- 2-74 23.00 15.00 0.05 0.06 7.00 3.60
10-16-74 21.00 17.00 0.06 0.08 7.10
1974 mean 32.75 16.00 0.05 0.07 7.37 3.55
9-11-75 34.74 9.27 0.04 0.07 7.50 3.30
9-25-75 30.11 12.74 0.03 0.07 7.30
10-10-75 9,42 9.23 0.04 0.06 7.90
10-23-75 14.82 5.56 0.00 0.02 8.70 2.40
1975 mean 22.217 9.20 0.03 0.06 7.85 2.85
9-14-76 46.32 15.06 0.08 0.13 &.60 5.50
9-27-76 - 271.79 13.90 0.42 0.16 4.90
10-12-76 28.56 11.97 0.39 D.13 5.50
10-28-76 16.21 9.27 0.32 0.06 17.60 4,80
1976 mean 29.72 12.55 0.31 0.17 6.15 5.15
1977 Drought conditions
9-11-78 36.44 15.44 0.09 0.10 7.90
9-25-78 61.75 . 19.77 0.03 9.20
10-10-78 12.97 8.80 0.10 0.12 7.60
10-23-78 B8.03 5.87 0.17 7.70
1873 mean 29.380 12.47 0.10 0.11 8.10
9-11-79 36.13 13.20 0.07 0.14 6.90
9-24-79 25.01 13.55 .0.11 6.20
10- 9-79 0.09 0.12 6.80
10-22-79 5.87 2.82 0.11 7.60
1579 mean 22.34 9.86 0.10 0.13 .88
9- 2-80 28.04 11.80 0.06 0.12 7.50
9-15-80 0.02 8.00
10-14-80 0.07 0.08 8.40
10-27-80 2.23 3.90 0.10 . 8.70
1980 mean 15.14 7.85 0.63 0.10 8.15
9- 1-81 0.02 .13 9.50
g9-15-81 0.03 8.70
10- 5-81 0.05 0.12 7.90
10-19-81 0.20 : 7.80
1981 mean 0.08 0.13 B8.50




TABLE V-1
{continued)

Dissolved Dissolved
Chlor a Pheo a NH,-N Ortho-PQ,-P Do BOD-5 day

Time Period  (pg/L)”  (ug/LY  (mg/L) (mg/L) (mg/L)  (mg/L)
overall Mean X 26.45  11.72  0.10 0.09 7.57 3.41
Standard
Standard s 15.32  4.56 0.10 0.03 1.01 1.26

 NOTES:

'? ]. The drought year of 1977 was assumed atypical and excluded from the overall
mean and standard deviation.

55,2. Numeric mean values are not flow weighted.

fi 3. The ratio of 100 g algae to 1 g chlorophyll a was used to compute algal bio-
‘ mass (the ratio of algal biomass to chloropyll a ranges from 25 to 150(5)
and is normally near 100).

4. Ninety percent of the total algal biomass was arbitrarily assumed to be
Algae 1 and 10% assumed to be Algae 2.

5 The ratio of 100 g detritus to 1 ¢ pheophyton a was used to compute detritus.

6. Ultimate carbonaceous BOD vas set to 1.46 times the 5 day BOD. This factor
is based on a laboratory decay rate of .23/day. ’
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APPENDIX A

STOCKTON SHIP CHANNEL CROSS SECTIONS-
DERIVED FROM 1977 AND 1982 SOUNDINGS
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